成全在线播放视频在线播放,成全电影大全在线播放,三年成全免费观看大全第四集,三人成全免费观看电视剧高清一共多少集啊,成全电影大全免费观看完整版动漫,成全电影大全在线观看第二季

xBGAS: A Global Address Space Extension on RISC-V for Scalable High Performance Computing

  報(bào)告時(shí)間: 2023年8月30日(周三)上午 10:00-11:30

  報(bào)告地點(diǎn): 計(jì)算所446會(huì)議室

  主講人:王翕(清華大學(xué))
  
  摘要:
  Emerging data-intensive applications, such as graph analytics and data mining, exhibit tremendous datasets and irregular memory access patterns. Research has shown that these memory-bound applications are unable to effectively leverage the principles of data locality and regular memory accesses within traditional cache-based memory systems to mitigate the “memory-wall” issue. The expansion of data volume has simultaneously driven a transition from monolithic architectures towards systems integrated with discrete and distributed nodes in large-scale computing systems. As such, multi-layered software infrastructures have become essential to bridge the gap between heterogeneous commodity devices. However, operations across synthesized components with divergent interfaces inevitably lead to redundant software footprints and undesired latency. Therefore, a scalable and unified computing platform, capable of supporting efficient interactions between individual components, is desirable for large-scale data-intensive applications. 
  In our presentation, we will unveil the Extended Base Global Address Space, or xBGAS, a novel extension for the RISC-V instruction set architecture (ISA), designed for scalable and high-performance computing. The xBGAS extension revolutionizes the landscape by providing native ISA-level support for direct remote shared memory access, achieved through the mapping of remote objects into an extended system address space. Further, we will walk through the performance ramifications of xBGAS through an insightful examination of both software and hardware, employing a wide range of data-intensive workloads.
  
  個(gè)人簡(jiǎn)介:
  王翕博士,清華大學(xué)博士后研究員,德克薩斯理工大學(xué)客座研究科學(xué)家 (Adjunct Research Scientist), 專(zhuān)注于計(jì)算機(jī)體系結(jié)構(gòu)的科研工作。于2020年在美國(guó)德克薩斯理工大學(xué)取得計(jì)算機(jī)科學(xué)博士學(xué)位, 擁有超過(guò)8年RISC-V體系結(jié)構(gòu)設(shè)計(jì)經(jīng)驗(yàn),含括處理器設(shè)計(jì),高性能計(jì)算,并行計(jì)算,編譯器,二進(jìn)制轉(zhuǎn)譯,敏捷開(kāi)發(fā)工具鏈等領(lǐng)域的科研工作。參與/主持多項(xiàng)由美國(guó)國(guó)家自然科學(xué)基金,美國(guó)國(guó)防部,美國(guó)能源部,深圳市科創(chuàng)委, RISC-V國(guó)際基金會(huì)資助的科研項(xiàng)目。科研成果在 DAC, IPDPS, HPDC, ICPP, TC, TOCS等國(guó)際頂級(jí)會(huì)議和期刊上發(fā)表論文,并榮獲IPDPS 2021年度最佳論文獎(jiǎng),ISSCC 2023 Code-a-Chip芯片設(shè)計(jì)獎(jiǎng)等國(guó)際學(xué)術(shù)會(huì)議獎(jiǎng)項(xiàng)??蒲谐晒D(zhuǎn)化被美國(guó)西北太平洋國(guó)家實(shí)驗(yàn)室 (PNNL),  阿貢國(guó)家實(shí)驗(yàn)室 (ANL), 勞倫斯伯克利國(guó)家實(shí)驗(yàn)室(LBNL), RISC-V國(guó)際基金會(huì), 美光科技, 大眾, 英特爾, 谷歌, 等機(jī)構(gòu)和企業(yè)采納使用。

 

  

凤阳县| 托克托县| 依兰县| 阳城县| 台中县| 利川市| 曲麻莱县| 泰州市| 万年县| 微山县| 毕节市| 通州区| 徐汇区| 淮安市| 德保县| 临沂市| 尤溪县| 兴隆县| 汉川市| 石门县| 启东市| 鄂伦春自治旗| 乐清市| 鄂温| 望城县| 胶南市| 罗城| 乌拉特前旗| 察雅县| 离岛区| 岱山县| 湛江市| 天等县| 修武县| 万源市| 昂仁县| 当雄县| 冕宁县| 金寨县| 广宗县| 普宁市|